Efflux of glutathione conjugate of monochlorobimane from striatal and cortical neurons.
نویسندگان
چکیده
Evidence for the presence of a novel transporter in primary cultures of rat striatal neurons and mouse cortical neurons similar in function to the multidrug resistance-associated protein (MRP1) is presented. Functional activity was assessed by efflux studies with the glutathione conjugate of monochlorobimane (B-SG). The glutathione transferase-catalyzed formation of B-SG in rat striatal neurons and mouse cortical neurons was inhibited by ethacrynic acid. The efflux of B-SG from rat striatal neurons and mouse cortical neurons was lower at 20 degrees C than at 37 degrees C and was lower in cells with reduced ATP concentrations compared with cells with constitutive ATP concentrations. In addition, the efflux of B-SG was inhibited by MK-571 in both rat striatal and mouse cortical neurons and by probenecid in rat striatal neurons, but not in mouse cortical neurons. Verapamil did not inhibit B-SG efflux in either rat striatal or mouse cortical neurons. Although functionally similar to MRP1, Western blot analysis with commercially available antibodies directed against human and mouse MRP1 failed to show MRP1-like protein in either whole-cell homogenates of rat striatal neurons or mouse cortical neurons, indicating that the described neuronal transporter differs in structure from human or mouse MRP1 or lacks epitopes in common with MRP1.
منابع مشابه
High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4).
Cumulative evidence suggests that several organic anions are excreted from the brain to the blood across the blood-brain barrier. In the present study, we carried out a kinetic investigation of the transport activity in MBEC4, an immortalized cell line established from BALB/c mouse cerebral microvessel endothelial cells. The presence of an efflux system in intact cells was examined by using mon...
متن کاملTwo-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface.
Glutathione is the major cellular thiol present in mammalian cells and is critical for maintenance of redox homeostasis. However, current assay systems for glutathione lack application to intact animal tissues. To map the levels of glutathione in intact brain with cellular resolution (acute tissue slices and live animals), we have used two-photon imaging of monochlorobimane fluorescence, a sele...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملMefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons.
Mefloquine is an effective antimalarial that can cause adverse neurological events including headache, nausea, fatigue, insomnia, anxiety and depression. In this study, we examined the oxidative stress response in primary rat cortical neurons treated with mefloquine by quantifying oxidative stress markers glutathione (GSH) and F(2)-isoprostanes (F(2)-isoPs). Furthermore, we examined whether mef...
متن کاملAstrocytes Prevent Ethanol Induced Apoptosis of Nrf2 Depleted Neurons by Maintaining GSH Homeostasis.
Glutathione (GSH), a major cellular antioxidant protects cells against oxidative stress injury. Nuclear factor erythroid 2-related factor 2 (NFE2L2/Nrf2) is a redox sensitive master regulator of battery of antioxidant enzymes including those involved in GSH antioxidant machinery. Earlier we reported that ethanol (ETOH) elicits apoptotic death of primary cortical neurons (PCNs) which in partly d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2001